函数y=-4^x-2^x的图像
1、函数为幂函数和指数函数的和,因幂函数和指数函数的定义域为全体实数,所以整体y的定义域为全体实数。

2、 定义域是指该函数的有效范围,函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合。
3、使用导数来判断函数的单调性,即计算函数的一阶导数,根据导数符号,为例子中为负数,故函数为单调减函数。

4、如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
5、如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图像上的任意两点连出的一条线段,这两点之间的函数图像都在该线段的下方,反之在该线段的上方。

6、函数的极限,列举函数在正无穷大、负无穷大和原点处的极限。

7、根据本例函数的特征,函数部分点的五点图解析表如下:

8、综合以上函数的定义域、值域、单调性、凸凹性和极限等性质,函数的示意图如下。
