函数y=-3×4^x-3×2^x的图像
1、解析函数的定义域,函数为幂函数和指数函数的和,因幂函数和指数函数的定义域为全体实数,所以整体y的定义域为全体实数。

2、计算函数的一阶导数,根据导数符号,解析函数的单调性。

3、 函数的单调性也叫函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
4、如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。

5、如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图像上的任意两点连出的一条线段,这两点之间的函数图像都在该线段的下方,反之在该线段的上方。
6、函数的极限,列举函数在正无穷大、负无穷大和原点处的极限。

7、根据本例函数的特征,函数部分点的五点图解析表如下:

8、综合以上函数的定义域、值域、单调性、凸凹性和极限等性质,函数的示意图如下。
